Heaps

Anton Gerdelan
<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Heaps

(not to be confused with the heap memory)

Binary tree
(not necessarily a BST)
value at node >= value of

children e e
tree is perfectly balanced

leaves are all 'as left as

possible’

heap is easily stored in an array

20 18 16 2 12 7

e work from top to bottom, left
to right

Heaps
e To add to heap - add to end of @
array
e pbut tree may no longer be heap v\
e to-rebalance tree e w
e compare new value to paren
e swap if bigger e @ e @

e repeat until no swap or at
rooft

20 18 15 2 12 7 22
22 18 20 2 12 7 15

e swap array values

Heap Array Rules

* foranyi<n/2

e heapli] >= heap[2 *i + 1]

* heapli] >= heap|[2 *i + 2]

heaplheap len] = new value;
heap len++;
child = heap len - 1;
parent = (child - 1) / 2;
while(child '= 0) {
1f(heapl[parent] >=
heap[child]) {
break;
}
swap (heap|[parent],
heap[child]);
child = parent;
parent = (child-1) / 2;

}

Heap as a Priority Queue

e |tem Is added to queue 0o
e value is the priority / \
18 20

* highest priority items taken first —< 7\
. 2 12 7 15

* |.e. root downwards

* to remove root from queue - 22 18 20 2 12 7 15

e copy last element into [O]

 decrement queue length counter

Removing Root

- result = heap[0];
heap[0] =

heaplheap len - 1];

heap len--;

* Queue is no longer
balanced

e work down from root

* if any child is greater
than root

* swap

15 18 20 2 15 7 45

vold movedown (int first) {

int parent = first;
int max child = 2 * parent + 1;
while(max child < heap len) {
//1 has 2 children
if(max child < heap len - 1) {

//right child is bigger

if(heap[max child] <
heap[max child + 1]) {
max child++;

}
)
1518 20 2 15 7] o/ eapiparent] o=

heap[max child]) {

step-through break :
}

swap (heap|[parent],
heap[max child]);

parent = max child;
max child = 2 * parent - 1;

Heapsort

 [he heap was created for Heapsort by JWJ Williams
(1964).

e Build a heap

e Algorithm removes biggest value from heap
e add to end of new list/array
e update heap to maintain balance

 when heap Is empty -> sorted array

Binary Heaps

Space O(n). O(1) aux. space used in Heapsort.

Search O(n)

Insert O(1) average, O(log n) worst

Delete O(log n) average, O(log n) worst

Heapsort O(n) best, O(n log n) average, O(n log n) worst
Worse cache performance than merge-sort - why?

Not a stable sort

Hard to parallelise

Better worst-case time complexity than quicksort

