
Heaps
Anton Gerdelan

<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Heaps 
(not to be confused with the heap memory)

• Binary tree  
(not necessarily a BST)

• value at node >= value of
children

• tree is perfectly balanced

• leaves are all 'as left as
possible'

• heap is easily stored in an array

• work from top to bottom, left
to right

20

15

7

18

122

20 18 15 2 12 7

Heaps
• To add to heap - add to end of

array

• but tree may no longer be heap

• to-rebalance tree

• compare new value to parent

• swap if bigger

• repeat until no swap or at
root

• swap array values

20

15

7

18

122

20 18 15 2 12 7 22

22

22 18 20 2 12 7 15

Heap Array Rules

• for any i < n/2

• heap[i] >= heap[2 * i + 1]

• heap[i] >= heap[2 * i + 2]

heap[heap_len] = new_value;  
heap_len++;
child = heap_len - 1;
parent = (child - 1) / 2;
while(child != 0) {  
 if(heap[parent] >=
 heap[child]){  
 break;  
 }  
 swap(heap[parent],
 heap[child]);
 child = parent;
 parent = (child-1) / 2;  
}

Heap as a Priority Queue
• item is added to queue

• value is the priority

• highest priority items taken first

• i.e. root downwards

• to remove root from queue -

• copy last element into [0]

• decrement queue length counter

22

20

7

18

122

22 18 20 2 12 7 15

15

• result = heap[0];  
heap[0] =  
 heap[heap_len - 1];  
heap_len--;

• Queue is no longer
balanced

• work down from root

• if any child is greater
than root

• swap

Removing Root
15

20

7

18

122

15 18 20 2 15 7 15

15

15

2018

122

void movedown(int first) {
 int parent = first;  
 int max_child = 2 * parent + 1;

 while(max_child < heap_len) {
 //i has 2 children  
 if(max_child < heap_len - 1) {
 //right child is bigger  
 if(heap[max_child] <  
 heap[max_child + 1]) {  
 max_child++;  
 }  
 }  
 if(heap[parent] >=  
 heap[max_child]) {  
 break;  
 }  
 swap(heap[parent],
 heap[max_child]);  
 parent = max_child;
 max_child = 2 * parent - 1;  
 }
}

step-through

15 18 20 2 15 7

7

Heapsort
• The heap was created for Heapsort by JWJ Williams

(1964).

• Build a heap

• Algorithm removes biggest value from heap

• add to end of new list/array

• update heap to maintain balance

• when heap is empty -> sorted array

Binary Heaps
• Space O(n). O(1) aux. space used in Heapsort.

• Search O(n)

• Insert O(1) average, O(log n) worst

• Delete O(log n) average, O(log n) worst

• Heapsort O(n) best, O(n log n) average, O(n log n) worst

• Worse cache performance than merge-sort - why?

• Not a stable sort

• Hard to parallelise

• Better worst-case time complexity than quicksort

